Bochner’s technique on Lorentzian manifolds and infinitesimal conformal symmetries

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric symmetries on Lorentzian manifolds

Lie derivatives of various geometrical and physical quantities define symmetries and conformal symmetries in general relativity. Thus we obtain motions, collineations, conformal motions and conformal collineations. These symmetries are used not only to find new solutions of Einstein’s field equations but to classify the spaces also. Different classification schemes are presented here. Relations...

متن کامل

Conformal boundary extensions of Lorentzian manifolds

We study the question of local and global uniqueness of completions, based on null geodesics, of Lorentzian manifolds. We show local uniqueness of such boundary extensions. We give a necessary and sufficient condition for existence of unique maximal completions. The condition is verified in several situations of interest. This leads to existence and uniqueness of maximal spacelike conformal bou...

متن کامل

On $(epsilon)$ - Lorentzian para-Sasakian Manifolds

The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.

متن کامل

Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds

The main result of this paper is that a Lorentzian manifold is locally conformally equivalent to a manifold with recurrent lightlike vector field and totally isotropic Ricci tensor if and only if its conformal tractor holonomy admits a 2-dimensional totally isotropic invariant subspace. Furthermore, for semi-Riemannian manifolds of arbitrary signature we prove that the conformal holonomy algebr...

متن کامل

On Lorentzian two-Symmetric Manifolds of Dimension-fou‎r

‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1998

ISSN: 0030-8730

DOI: 10.2140/pjm.1998.186.141